首页 分享 基于有记忆递归神经网络的脑电特征情感识别研究

基于有记忆递归神经网络的脑电特征情感识别研究

来源:萌宠菠菠乐园 时间:2024-10-18 09:31

摘要:

为了提高脑电信号多分类的情感识别率,文中选用上海交通大学提供的SEED脑电信号数据集,对其进行分频带特征提取。将脑电数据的微分熵特征、微分不对称性特征和有理不对称性特征通过线性动力系统平滑特征后,与功率谱密度特征进行分类效果比较,再利用有记忆递归神经网络的方法进行分类,发现提取的微分熵特征经过分类的效果好。在对3种情感进行分类的过程中,采用长短时记忆神经网络分类相比于其他机器学习方法识别率有所提高,情感识别的平均准确率可达到95.045 9%。

关键词: 脑电信号, SEED数据集, 微分熵, 微分不对称, 有理不对称, 线性动力系统, 有记忆递归神经网络

Abstract:

In order to improve the accuracy rate of the emotional recognition of EEG signals in multi-classification, the SEED dataset published by SJTU is selected as the sample of EEG dataset. The original EEG signal is divided into five frequency bands, and their features are extracted. After the features of the differential entropy, the differential asymmetry and the rational asymmetry of EEG datasets are smoothed by linear dynamic system, the classification effect is compared with the feature of power spectral density. Then, the method of the long short-term memory neural network is used to classify emotion. It is concluded that the classification of the differential entropy feature is effective. Finally, compared with other machine learning methods, the recognition rate is improved, and the average accuracy of emotion recognition reaches 95.045 9%.

Key words: EEG signals, SEED dataset, differential entropy, differential asymmetry, rational asymmetry, linear dynamical system, long short-term memory neural network

中图分类号: 

TP391

相关知识

基于深度神经网络的多模态情感识别
基于心率变异性的情绪识别研究
查找: 关键字=情感识别
基于多维神经网络深度特征融合的鸟鸣识别算法
多模态情感识别数据集和模型(下载地址+最新综述2021.8)
基于卷积神经网络的宠物识别
基于卷积神经网络通过声音识别动物情绪的方法及系统与流程
基于卷积神经网络的宠物识别 Pet Recognition Based on Convolutional Neural Network
基于卷积神经网络通过声音识别动物情绪的方法及系统
研究分析:基于脑电生物反馈原理的注意力训练系统

网址: 基于有记忆递归神经网络的脑电特征情感识别研究 https://www.mcbbbk.com/newsview412368.html

所属分类:萌宠日常
上一篇: 如何判断男人是不是假装爱你?
下一篇: 触觉手势情感识别的超限学习方法

推荐分享