如何在C++中进行情感识别和情感分析?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <iostream>
#include <map>
#include <vector>
using namespace std;
map<string, double> trainNaiveBayesModel(const vector<vector<string>>& trainingData, const vector<string>& labels) {
map<string, double> model;
int numPositiveWords = 0, numNegativeWords = 0;
map<string, int> positiveWordCount, negativeWordCount;
for (int i = 0; i < trainingData.size(); ++i) {
const auto& document = trainingData[i];
const auto& label = labels[i];
for (const auto& word : document) {
if (label == "positive") {
positiveWordCount[word]++;
numPositiveWords++;
} else if (label == "negative") {
negativeWordCount[word]++;
numNegativeWords++;
}
}
}
for (const auto& entry : positiveWordCount) {
const auto& word = entry.first;
const auto& count = entry.second;
model[word] = (count + 1) / double(numPositiveWords + positiveWordCount.size());
}
for (const auto& entry : negativeWordCount) {
const auto& word = entry.first;
const auto& count = entry.second;
model[word] = (count + 1) / double(numNegativeWords + negativeWordCount.size());
}
return model;
}
string classifyDocument(const vector<string>& document, const map<string, double>& model) {
double positiveProbability = 0, negativeProbability = 0;
for (const auto& word : document) {
if (model.count(word) > 0) {
positiveProbability += log(model.at(word));
negativeProbability += log(1 - model.at(word));
}
}
if (positiveProbability > negativeProbability) {
return "positive";
} else {
return "negative";
}
}
int main() {
vector<vector<string>> trainingData = {{"I", "love", "this", "movie"},
{"I", "hate", "this", "movie"},
{"It", "is", "amazing"},
{"It", "is", "terrible"}};
vector<string> labels = {"positive", "negative", "positive", "negative"};
map<string, double> model = trainNaiveBayesModel(trainingData, labels);
vector<string> document = {"I", "love", "this", "movie"};
string sentiment = classifyDocument(document, model);
cout << "Sentiment of the document: " << sentiment << endl;
return 0;
}
相关知识
如何在C++中进行情感识别和情感分析?
语音情感识别调研
情感识别技术:从文本到情感
查找: 关键字=情感识别
情感知觉理论:如何提升情感识别能力
如何在熊猫频道上进行虚拟宠物的情感互动?
情感分析的终极形态:全景式细粒度多模态对话情感分析基准PanoSent
音乐情感识别算法研究
对话情感识别研究综述:从基础到前沿
音乐情感识别下载
网址: 如何在C++中进行情感识别和情感分析? https://www.mcbbbk.com/newsview460457.html
上一篇: 测验:从你喜欢宠物种类 了解你的 |
下一篇: 情感知觉理论:情感识别在智能化应 |
推荐分享

- 1我的狗老公李淑敏33——如何 5096
- 2南京宠物粮食薄荷饼宠物食品包 4363
- 3家养水獭多少钱一只正常 3825
- 4豆柴犬为什么不建议养?可爱的 3668
- 5自制狗狗辅食:棉花面纱犬的美 3615
- 6狗交配为什么会锁住?从狗狗生 3601
- 7广州哪里卖宠物猫狗的选择性多 3535
- 8湖南隆飞尔动物药业有限公司宠 3477
- 9黄金蟒的价格 3396
- 10益和 MATCHWELL 狗 3352