首页 分享 如何在C++中进行情感识别和情感分析?

如何在C++中进行情感识别和情感分析?

来源:萌宠菠菠乐园 时间:2024-10-25 10:44

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

#include <iostream>

#include <map>

#include <vector>

using namespace std;

map<string, double> trainNaiveBayesModel(const vector<vector<string>>& trainingData, const vector<string>& labels) {

    map<string, double> model;

    int numPositiveWords = 0, numNegativeWords = 0;

    map<string, int> positiveWordCount, negativeWordCount;

    for (int i = 0; i < trainingData.size(); ++i) {

        const auto& document = trainingData[i];

        const auto& label = labels[i];

        for (const auto& word : document) {

            if (label == "positive") {

                positiveWordCount[word]++;

                numPositiveWords++;

            } else if (label == "negative") {

                negativeWordCount[word]++;

                numNegativeWords++;

            }

        }

    }

    for (const auto& entry : positiveWordCount) {

        const auto& word = entry.first;

        const auto& count = entry.second;

        model[word] = (count + 1) / double(numPositiveWords + positiveWordCount.size());

    }

    for (const auto& entry : negativeWordCount) {

        const auto& word = entry.first;

        const auto& count = entry.second;

        model[word] = (count + 1) / double(numNegativeWords + negativeWordCount.size());

    }

    return model;

}

string classifyDocument(const vector<string>& document, const map<string, double>& model) {

    double positiveProbability = 0, negativeProbability = 0;

    for (const auto& word : document) {

        if (model.count(word) > 0) {

            positiveProbability += log(model.at(word));

            negativeProbability += log(1 - model.at(word));

        }

    }

    if (positiveProbability > negativeProbability) {

        return "positive";

    } else {

        return "negative";

    }

}

int main() {

    vector<vector<string>> trainingData = {{"I", "love", "this", "movie"},

                                           {"I", "hate", "this", "movie"},

                                           {"It", "is", "amazing"},

                                           {"It", "is", "terrible"}};

    vector<string> labels = {"positive", "negative", "positive", "negative"};

    map<string, double> model = trainNaiveBayesModel(trainingData, labels);

    vector<string> document = {"I", "love", "this", "movie"};

    string sentiment = classifyDocument(document, model);

    cout << "Sentiment of the document: " << sentiment << endl;

    return 0;

}

相关知识

如何在C++中进行情感识别和情感分析?
语音情感识别调研
情感识别技术:从文本到情感
查找: 关键字=情感识别
情感知觉理论:如何提升情感识别能力
如何在熊猫频道上进行虚拟宠物的情感互动?
情感分析的终极形态:全景式细粒度多模态对话情感分析基准PanoSent
音乐情感识别算法研究
对话情感识别研究综述:从基础到前沿
音乐情感识别下载

网址: 如何在C++中进行情感识别和情感分析? https://www.mcbbbk.com/newsview460457.html

所属分类:萌宠日常
上一篇: 测验:从你喜欢宠物种类 了解你的
下一篇: 情感知觉理论:情感识别在智能化应

推荐分享